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We extend former investigation to a partially degenerate electron fluid at any temperature of multiple slow
ion scattering at T=0. We implement an analytic and mean-field interpolation of the target electron dielectric
function between T=0 �Lindhard� and T→� �Fried-Conte�. A specific attention is given to multiple scattering
of proton projectiles in the keV energy range, stopped in a hot-electron plasma at solid density.
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I. INTRODUCTION

The purpose of the present paper is to contribute to the
investigation of the basic interaction physics involved in the
recently reoriented U.S. heavy-ion program �1–3� and now
mostly devoted to the production of the so-called warm
dense matter �WMD�, i.e., plasmas at ordinary matter density
with a few eV temperature. Toward this goal, it is proposed
�2,3� to accelerate linearly intense ion beams impacting thin
foils.

The given ion-target interaction is also supposed
to take place at moderate or low projectile velocity
��0.03–3 MeV /a� �3� near Bragg peak, thus featuring a
maximum, as well as mostly homogenous, energy deposition
in a thin foil. We thus focus the attention on the very low
velocity regime for the ion projectile with an oriented veloc-
ity vp�vthe, with vthe denoting the target electron thermal
velocity. Relevant ion stopping issues for relatively light pro-
jectile �Z�24� have already been alluded to �1,3�. In this
case, the actual projectile penetration depth �4� should be
routine evaluated through an estimate of multiscattering
�MS� on target ions. Moreover, recent studies dedicated to
the stopping of intense relativistic and PetaWatt �PW� laser-
produced electron beams have also unraveled a non-
negligible contribution to MS due to the target electrons �5�.
With these promises in mind, we are thus lead to extend at
any target temperature T a recent MS treatment for low ve-
locity ion projectiles in a fully degenerate electron jellium at
T=0 essentially due to Archubi and Arista �6�. The WDM
parameters range puts a strong emphasis on the partial de-
generacy of target electrons with T�10 eV.

Toward this goal, we heavily rely on the mean-field and
interpolated dielectric function �7–9� ��q ,�� between the T
=0 �Lindhard� �10� and the high-temperature �Fried-Conte�
�11� corresponding limits, as worked out by the Orsay group
and others �7–9,12�. Similar efforts have also been focused
on low velocity ion slowing down in partially degenerate
electron fluid through a nonlinear treatment of the T depen-
dence �13�.

The sequel is structured as follows. In Sec. II, we stress
the usefulness of pseudoanalytic expressions �8� for the RPA
��q ,�� at any T out of former exact interpolations �7�. From
them, in Sec. III, single-scattering features are derived
through the probability function G�q�� in terms of transverse

momentum. In Sec. IV, we turn to multiple scattering and
focus our attention on the half angle at half maximum �1/2
through a parameter investigation in terms of electron target
temperature T, thickness X, and density number ne, as well as
ion projectile velocity vp. A numerical and efficient extension
of the Bethe ansatz is in Sec. V. Summaries are briefly out-
lined in Sec. VI.

II. ε(Q ,�) AT ANY TEMPERATURE T

Among the several available presentations �7–9� of the
interpolated random-phase approximation �RPA� dielectric
function ��q ,��, the one advocated by Arista and Brandt �8�
seems especially suited to the present analysis. In view of the
low ion velocity vp advocated here, we may safely restrict to
a quasistatic approximation �vp�vthe, where vthe includes a
Pauli repulsion contribution for T�TF, TF being Fermi tem-
perature� such that �→0. Then, explicating the complex
��q ,�� as

��q,�� = �r�q,�� + i�i�q,�� , �1�

we can use the approximation ��r�q ,���� ��i�q ,��� to vali-
date the so-called stopping function under the form

Im�−
1

��q,��� =
�i�q,��

���q,���2
	

�i�q,��
�r

2�q,��
, �2�

yielding the spectrum of plasma excitations in terms of mo-
mentum transfer �q and energy ��, so in the �→0 limit and
with Table II of Ref. �8�, we get

S�q,�� 
 Im�−
1

��q,���



2m2e2q�

�3�q2 + qs
2�2 ·

1

1 + exp� �2q2

8meT
− 	� , �3�

with 	=
� pictured on Fig. 1, where 
= �kBT�−1 and � the
chemical potential of the partially degenerate electron fluid
�PDEF�. qs

2 �see Fig. 2� is obtained from 	 through

qs
2 =

1

2
qTF

2 �1/2F−1/2�	� , �4�

with qTF the Thomas-Fermi screening parameter and*romain.popoff@u-psud.fr
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F �	� = 
0

� x

1 + ex−	dx

the Fermi function. It should be appreciated that we deleted
the usual Bose factor N��� in reducing Eq. �3� to the energy-
loss function because N��� gets finally cancelled in the
�q ,�� quadrature featuring the stopping-power expression
�8�.

�i� The extreme limits of 	 with respect to temperature

	 	�
1

�
�� � 1�

ln� 4

3���3/2� � �5�

are given on Fig. 1 altogether with the exact interpolating
black curve 	 valid at any T �or equivalently ��.

�ii� qs
2 advocate the two �= T

TF
limits

qs
2 	�

qTF
2

�1 +
9�2

4

�� � 1�

1/�D
2

�1 +
4

9�2

�� � 1��
and corresponding limit

qs
2 	�lim

��1
qs = qTF = �3

�p

vF

lim
��1

qs =
1

�D

�
in terms of PDEF frequency �p, vF=�qF /me the Fermi ve-
locity with Fermi wave number qF= �3�2ne�1/3, and �D the
classical Debye screening length valid for �€ �1. These ex-
pressions altogether with the qs

2 valid for all T are displayed
on Fig. 2.

Then we can express the right-hand side of Eq. �3� in the
two extreme limits by

�1� ��1. Here, altogether with the qs
2 valid for all T,

S�q,�� 

2m2e2q�

�3�q2 + qTF
2 �2 , for q � 2qF,

S�q,�� = 0, for q � 2qF. �6�

�2� ��1. Here,

S�q,�� 

ne

2m2e2q�

�q2 + 1/�D
2 �2� 2�

mekBT
�3/2

exp�−
�2q2

8mekBT
� . �7�

Equation �6� corresponds to absorption of small amounts of
energy ���TF by a degenerate electron gas. Owing to the
exclusion principle, only those electrons close to the Fermi
surface can participate. Thus, the momentum transfer �q can
never be larger than 2qF.

This restriction is relaxed for high temperatures as
shown by Eq. �7�, where excitations with small � but large
q values occur—they involve electrons in the tail of the
Maxwell-Boltzmann distribution and thus contribute with
exponentially decaying probability. Yet, this is a characteris-
tic quantum effect, as indicated clearly by the factor
exp�−�2q2 /8mekBT� which replaces the analogous factor
exp�m�2 /2kBTq2� arising in classical theories.

III. SINGLE SCATTERING

Adapting the T=0 formalism �cf. �14,6�� for the ion pro-
jectile scattering probability expressed as

d4P

d3qd�
=

�F�q��
�2q2

2Im� − 1

��q,������� − �q� · v�p� , �8�

with a pointlike projectile form factor F�q�=Ze, Z being the
ion charge, and using the splitting d3q=d2q� dq� relative to
initial beam velocity vp, we get

d2P

d2q�

= d3P

d3q
dq�

FIG. 2. qs
2 �a.u.� in terms of �= T

TF
.FIG. 1. �Color online� 	�= �

kBT � in terms of �= T
TF

.
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=
1

��2 dq�

q�
2 + q�

2 �F�q��2Im� − 1

��q,�����=q�vp

, �9�

expressing the probability of ion projectile differential scat-
tering, yielding its angular deflections in single-scattering
events through inclusion of the target electrons collective
screening properties. Putting Eq. �3� into the above equation
�9� yields

dP

dq�

= vpG∀T�q�� ,

where

G∀T�q��

=
4Z2e4me

2

�4�
q�

q�

� 1

�q2 + qs
2�2

1

1 + exp� �2

8meT
q2 − 	�dq

�10�
denotes the vp-independent probability function. Equation
�10� thus extends at any T value a former T=0 expression �6�
derived within the framework of the so-called free-electron-
gas �FEG� model.

Figure 3 depicts a typical G∀T�q�� scatting function con-
trasted to its T=0 �FEG� homologous for a typical target
density rs=1.5, where 4�rs

3 /3=1 /ne=4.8�1023 cm−3, for a
proton projectile �Z=1�. The function G�q�� at T=0 always
features an upper bound for G∀T�q��. The latter slightly de-
creases with increasing T at fixed ne, while its range steadily
extends to higher q� values. Equation �10� is also contrasted
to its high-temperature Fried-Conte limit �cf. Eq. �7�� on Fig.
3 featuring the lowest black curve.

Focusing attention on the strongly degenerate range �
�1, one obtains corresponding G curves on Fig. 4, while
extending q� to the � values displayed on Fig. 3 yields the
more complete G patterns featured on Fig. 5. Then, full de-
generacy ��=0� is signaled by a vertical line.

IV. MULTIPLE SCATTERING

A. General

From the density probability function �Eq. �10��, we can

access the differential cross section for ion multiple scatter-
ing in a PDEF. At a given transverse momentum transfer
�q�, this quantity writes as

d� =
1

nevp
dP =

1

ne
G∀T�q�� , �11�

with angular ion deflection � taken in the small-angle ap-
proximation �q�=Mpvp�, with the ion projectile mass Mp.

Following the Sigmund-Winterbon procedure �6,15�, we
then turn to the convolution of the multiple-scattering events
as the particle penetrates a distance X within the solid. It is
usually represented by the multiple-scattering �MS� function
f�� ,X� which yields the statistical distribution of particles
with a total angular deflection �. So we can express the
electronic multiple-scattering �EMS� function in the form
F�� ,X�d�= f�� ,X�d� /2�, where f�� ,X� is given in the
small-angle approximation by �15�

f��,X� = 
0

�

�d�J0����exp−neX�0���. �12�

The function �0��� is determined from the previously de-
fined scattering function G∀T�q��, for the present case of a
PDEF, which takes the form
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FIG. 3. �Color online� Probability distribution G∀T�q�� at any
temperature T contrasted to its FEG counterpart �T=0�. q� in a0
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and rs=1.5.
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�0∀T��� = �1 − J0�����d�

=
1

ne


0

� �1 − J0��q��

M1vp
��G∀T�q��dq�, �13�

with q� qualifying a classical and nondegenerate upper
bound. In this connection, it is worthwhile to notice that
replacing the given infinite upper limit by the fully degener-
ate 2qF one does not change significantly the �0��� estimate.
Finally, we reach the angular distribution function explained
at Eq. �12� for a given penetration depth X in target.

B. Half width at half maximum angle �1Õ2

Analysis of quadrature of the previously reached Eq. �12�
essentially relies on �1/2, the half angle at half maximum,
fulfilling f�� ,X�= f�0,X� /2. The usefulness of this concept is
successively highlighted through its T dependence, X depen-
dence, vp dependence, as well as ne �or rs� dependence.

The T dependence is documented on Fig. 6 as a monoto-
nous decay for a PDEF target ��1 with ne	4.8�1023 and
a thickness X=0.0424 �m �800 a.u.�, while the strongly de-
generate regime ���1� features a nearly horizontal plateau.
At every � value, the thickness dependence follows the
Gaussian-like trend

�1/2 � �X �14�

already featured at �=0 �6�.

V. BEYOND THE BETHE APPROXIMATION

Usually, the right-hand side of Eq. �13� is estimated
through the assumption �M1, ion projectile mass�

�q�

M1Vp
� 1, �15�

with the Bethe ansatz �17�

1 − J0� �q�

M1vp
� 
 1/4� �q�

M1vp
�2

, �16�

which we intend to enlarge here. Usually, one assumes that
for heavy ions with M1≫me at nonzero vp, this ansatz is a
robust one. However, if one has to consider lighter projec-
tiles such as mesons or electrons and arbitrary small projec-
tile velocities as well, one might encounter difficulties, even
if the �→� limit is handsomely taken into account by a
sufficiently fast decaying � integrand, while the above com-
puted G�q�� also decreases faster than q̄�

4 as q�→�.
A typical quantity of interest, the mean-free path �mfp� l,

thus writes as �in a.u.�

1

�
=

1

4

�2

�M1vp�2 q̄�
2 =

1

4
�2�̄2, �17�

where

q̄�
2 = 

0

�

q�
2 G�q��dq� �18�

and

�̄2 =
q̄�

2

�M1vp�2 , �19�

when one restricts to the Bethe ansatz �16�.
Now, we propose to relax the constraint �15� with the

finite and alternate series �18�

1 − J0�x� = 4� x

4
�2

− 4� x

4
�4

+ 1.777 756� x

4
�6

− 0.444 358 4� x

4
�8

+ 0.070 925 3� x

4
�10

− 0.007 672 2� x

4
�12

+ 0.000 501 441 5� x

4
�14

+ �0�x� , �20�

with ��0�x���10−9 for −4�x�4, which extends the Bethe
ansatz �16� and expression �17� for 1 /� to

1

�



�̄2

4
q̄�

2 −
�̄4

43 q̄�
4 + 1.777 756

�̄6

46 q̄�
6 − 0.444 358 4

�̄8

48 q̄�
8

+ 0.070 925 3
�̄10

410 q̄�
10 − 0.007 672 2

�̄12

412 q̄�
12

+ 0.000 501 441 5
�̄14

414 q̄�
14, �21�

where

q̄�
2p = 

0

�

q�
2pG∀T�q��dq�. �22�

By inspecting Figs. 3–5, it is obvious that the 2p momenta
�22� remain finite. However, they can reach very high values

for p=6 or 7, which can severely restrict the �̄-validity
range. Nonetheless, the extension �20� proves useful at not

FIG. 6. �Color online� �1/2 �in degrees� in terms of T /TF in an
electron target with density rs=1.5 and thickness X=800 a.u.
�0.0424 �m�. k	1.
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high a temperature �T�3 TF�, while it allows converging

alternate series �21� up to �̄
1, which already enlarges con-
siderably the validity domain of the initial Bethe ansatz �16�.

A deeper insight is also afforded by a direct and analytic
estimate of Eq. �22� with Eq. �10� in atomic units, so that �p€

�1–7��

q̄�
2p =

2Z2

�

�8T�p−1/Z

�p + 1� q�

� u�2p+Z�du

�u2 + us
2�2�1 + eu2−	�

�23�

after integrating by parts, where �T in a.u.�

u2 =
q2

8T
and uS

2 =
qS

2

8T
.

Expression �23� is further explained through

uS
2 =

qTF
2

16T
� T

TF
�1/2

F −
1

2
�	� , �23a�

with

qTF
2 = 3� TF

1.84
�3/2 1

�T2 +
4

9
TF

2�1/2 �24�

and �8�

F−1/2�	� 

4

�4� + 9�3�1/2 , � =
T

TF
. �25�

A more precise albeit involved Padé approximation for
F−1/2�	� may alternatively be used �9�. On the other hand,
one can also introduce

	 =
�0�T�

T
, �26�

where �0�T� and T are in TF, with �19� and

�0�T� = exp�− t2

12
+ A1t2� + 2.718� � �T�exp�− 1 − A2t−2

− A3t−4� , �27a�

with

t = �T, A1 = 0.178, A2 = 1,75, A3 = 59.4,

while

��

T
= − ln�6�2� + 1.5 ln

4�

T
+ ¯ . �27b�

A first test of the above derivation is performed with T /TF
=1 and TF=3 in a.u, which in the fast ignition scenario �FIS�
for inertial confinement fusion �ICF� �16� yields 0.0475 for

the first term in the right-hand side of Eq. �21� with �̄=1,
although the whole series amounts to 0.0429. On the other
hand, at FIS ignition �T /TF=1� with ne
1026 e cm−3 �TF


29�, the series �21� converges only with �̄=0.1 to its firstTABLE II. Same caption as Table I for T /TF=0.1 and TF

=28.85.

�̄ R

0.01 0

0.05 0.002

0.1 0.007

0.5 0.58

1 19

TABLE III. Same caption as Table II for TF=0.3.

�̄ R

1 0.0045

2 0.21

3 0.40

4 0.58

TABLE I. �̄ �Eq. �19�� and R �Eq. �28�� in terms of TF for T /TF=1.

TF=0.29
Ne=1023 cm−3

TF=1.34
Ne=1024 cm−3

TF=6.215
Ne=1025 cm−3

TF=28.85
Ne=1026 cm−3

�̄ R �̄ R �̄ R �̄ R

0.01 0 0.01 0 0.01 0 0.01 0

0.05 0 0.05 0 0.05 0 0.05 0.02

0.1 0 0.1 0 0.1 0 0.1 0.07

0.5 0.026 0.5 0.1 0.5 1.8 0.5 10.6

1.0 0.1 1.0 0.3 1.0 4.2 1 77154

2.0 0.3 2.0 6.34 2.0 26086

3.0 0.48

4.0 0.54
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term which nevertheless significantly improves on the ex-
treme inequality �15�.

A wider perspective is offered in Table I at T /TF=1 and
for target electron densities of FIS concern, i.e., 1023

�Ne �cm−3��1026, with 0.29�TF�28.85. Then, we con-
sider the ratio

R = � �̄2q̄�
2

4
− �RHS Eq. �21��

�̄2q�
2

4
� �28�

in terms of �̄ �Eq. �19��. Table I shows that for �̄�0.1, the
restriction to the first term in Eq. �21� remains an excellent
approximation for any TF value. It persists as a possible one

up to �̄=1 for TF=0.3 and 1.34. Above �̄=1 and for higher
TF values, the ratio R can demonstrate an explosive increase,
invalidating completely the so-called Bethe ansatz.

Corresponding physical situations primarily highlight
multiple scattering of lighter projectiles such as electrons and
mesons in a strongly degenerate electron target. Switching
attention to strongly degenerate electron targets featuring
T /TF=0.1, one witnesses contrasting robustness behaviors of
very dense �Table II� and moderately dense targets �Table

III�. In the first case, R remains close to zero only with �̄

�0.1, while in the second case, one sees that �̄�1 fulfills
this requirement.

It should be appreciated that T /TF=0.01 would produce
nearly identical outputs. On the other hand, in the high-
temperature range T /TF�1, the robustness of the Bethe an-
satz decreases with increasing T as evidenced on Table IV.

VI. SUMMARY

We have extended to any temperature a former T=0 �6�
FEG multiple-scattering formalism for a low velocity �vp
�vthe� ion projectile stopped in a PDEF of potential WMD
concern. The relevant �1/2 parameter exhibits a significant
temperature dependence.

These calculations are of relevance to deuterium-tritium
targets with ne�1024–1026 cm−3 at T��0.5;2� keV submit-
ted to proton beams in the MeV energy range in order to
achieve fast ignition in ICF �16�. They also pave the way to
extending multiple-scattering studies to projectiles with any
mass, not only heavy ions, as far as arbitrary degenerate
electron targets are considered.
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